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One-Sided Limits.  Infinite  limits. Monotonic Functions. 
Definition . (the  right-hand  limit   of    ).

 We  write  [image: ] to  indicate  that as   approaches  from  the  right,     approaches  , i.e. if    ,  then  we  write  conventionally    The  number    is  called  the  limit  from  the  right  of   the  function.  
Definition . (the  left-hand  limit   of    ).


 We  write   to  indicate  that as   approaches  from  the  left,     approaches     i.e. if    ,  then  we  write  conventionally    The  number    is  called  the  limit  from  the  left  of   the  function.  
Definition. The  right-hand  limit   and  left-hand  limit  are  called  one-sided  limits. 
For a full limit to exist, both one-sided limits have to exist and they have to be equal.
 First  remarkable  limit :

                                                                                                    (4)
The  formula  (4)  is  frequently  used   when  solving   the  following  examples.          

Example 1:    

Example 2:   

Theorem  (The squeezing theorem).  If f, g, and  h  be functions satisfying 

Let p>0.  Suppose that,  for all   x  such that 

If  ,   then

Monotonic Functions
Definition.  The  function  f   is  increasing on an interval I, if   whenever  are in I,  and  ,  or  decreasing  on an interval I, if   whenever  are in I,  and  
In either of  these two case, f is strictly monotonic on I.
The  function  f   is  nondecreasing on an interval I, if   whenever  are in I,  and  ,  or  nonincreasing  on an interval I, if   whenever  are in I,  and  

A  functions  that  satisfies  any  of these conditions is called  monotonic.     
Definition.
We  say  that  f  is  bounded  on  a set  S, if   there  is a constant    such that 

for all x in S.
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